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P a r a m e t e r s  have been de te rmined  for  s o m e  effect ive spher i ca l ly  s y m m e t r i c a l  potentials by 
r e f e r e n c e  to the v i scos i ty  data for wa te r  vapor ,  and conclusions a r e  drawn on the appl icabi l i ty  
of the models .  

It has long been recognized that  t he r e  a r e  ma jo r  diff icult ies in applying kinetic theory  to  calcula te  
t r a n s p o r t  p a r a m e t e r s  for polyatomie polar  gases  [1]. In that  case ,  the C h a p m a n - - E n s k o g  solution may not 
be  appropr i a t e ,  as it employs effect ive spher i ca l ly  s y m m e t r i c a l  potentials ,  and so  the d i sc repanc ies  between 
the  calculated and measu red  t r a n s p o r t  coefficients  may be due not only to  assumpt ions  made in the theory ,  but 
a l so  to  imper fec t ion  in the  models .  Here  we use  data on the dynamic v i scos i ty  at ze ro  densi ty  T0(T) for water  
vapor  to examine var ious  mo lecu l a r - i n t e r ac t i on  potent ia ls .  For  convenience in compar i son  with exper iment ,  
the  model  calculat ions have been compared  with the following interpolat ion formula  [2]: 

1 
- -  n 

= a s  , ( 1 )  

which rep roduces  the most  re l i ab le  m e a s u r e m e n t s  v e r y  c lose ly ,  

The  p a r a m e t e r s  of the mo lecu l a r - i n t e r ac t i on  potentials were  de te rmined  by minimizing the sum of 
squa res  of the res idua l s  : 

q) = Wj ~leo?--~lo] T*, ~, . . . . .  rain. (2) 

i = t  

Then  the C h a p m a n - -  Enskog theory  gives _ 

~]0icalc/T*l i (~, ek ' " '" -- 0.26693.10 -~ ~Qc2.-~), (T*) "~ (3) 

The number  of measu red  values (n = 225), namely ,  }, and the r e l a t ive  e r r o r s  6~0 J we re  taken as in the 
definit ion of the coefficients of (1) in [2]. 

It is useful to de sc r ibe  the tabulated col l is ion in tegra ls  [2 (2.2)*~r ,) for  the cor responding  potentials in 
t e r m s  of s o m e  sui table  analyt ical  function such as the polynomial  

~2 (2"2)* (r*) = ~ b~ (T*)-L (4) 
i=0 

The coefficients bi were  de te rmined  by l e a s t - squa re s  fi t t ing. 

The  S tockmayer  potential  [3] is the mos t  widely used in examining the p roper t i e s  of polar  gases ,  in 
which the angle-dependent  t e r m  is rep laced  by a t e r m  cor responding  to the in te rac t ion  between two point 
dipoles lying on a common line: 
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TABLE i. P a r a m e t e r s  of M o l e c u l a r - I n t e r a c t i o n  P o t e n t i a l s  

Potential . 

L-J (9-6) 
L-J (12-6) 
L-J (15-6) 
Kecsom (9-6-6) 

Keesom (12-6-6) 

Keesom (15-6-6) 
S-t0~kma'ye/ 
6* = 1,0 
Stockmayer 
6*= 1,5 
$tockmayer 
8" = 2,0 
Stockmayer 
6" = 2,5 

Kihara + 
dipole- dipolr 
6* = 2,0; 

1 " = 0 6  
eotential of ~10) 

5.18 
268 
268 
74 

560 
98 

501 
112 
190 

953 

201 

189 

178 

86 

86 

(+)0. 
775 • 90 
740+60 
705 • 100 
633• 

119 
515+19 
110• 
380• 

1430• 12 

3865=4 

II06• 

528~30 

1045• 

461 

452 

2,6t ~0,09 
2,73• 
2,94+0.09 
2,65• 

3,62 
2,76• 
3.05• 
2,85• 
2, 12• 

2,79• 

1,92+0,01 

2,27• 

2,00+0,03 

2,79 

2,79 

~, Debye 

l,l  1 • 
1,84 (fixed) 
1,384-0,01 
1,84 (fixed) 
1,55q-0,01 

1,94 

1,86 

2,08 

2,06 

o 
1,46 (cr = O, A a -  

fixed) 
1,46 (r = 0,35 .~)) 

, v  o , , ' - " - , ' - ' - " , ' - ' ,  
One expects that  such a model  would give good re su l t s  for  the t r a n s p o r t  p a r a m e t e r s  at high t e m p e r a -  

t u r e s ,  where  the r epu l s ive  fo rces  a r e  dec i s ive ,  

Calculat ions have been pe r fo rmed  [4] on the  col l is ion in tegra ls  for the Kihara model  with a contr ibution 
f r o m  d i p o l e  - -  d i p o l e  i n t e r a c t i o n ,  i~ eo, 

( ) '  �9 ,~ , 6  e r (  1 - - y  t [ l - - y  '~ 6*r*-'] 
v ( r ) = 4  ~-  o [ \ ~ l  - - I ,  r * ~ - ~ / - -  J"  (6) 

I t  i s  a s s u m e d  tha t  a m o d e l  wi th  a s p h e r i c a l  c o r e  r e p r o d u c e s  a p p r o x i m a t e l y  t h e  e f fec t s  of t h e  i n t e r n a l  e n e r g y  
on t h e  c o l l i s i o n s ;  c o l l i s i o n  i n t e g r a l s  w e r e  d e r i v e d  [4] fo r  s p e c i f i e d  o r i e n t a t i o n s  and t hen  a v e r a g e d  o v e r  t he  
o r i e n t a t i o n s .  

R e c e n t l y ,  n u m e r o u s  c a l c u l a t i o n s  have  b e e n  p e r f o r m e d  wi th  t h e  K e e s o m  a v e r a g e  p o t e n t i a l  [5, 6]: 

V~ ] .  (7) 

This function is a superposition of the Lennard-Jones (12-6) potential and the averaged dipole--dipole 
attraction (the first term in the expansion of [7]). A similar procedure can be used for any Lennard-Jones 
n - -  6 potential, i . e . ,  

6 

n 1 (8) , T* j" 
I t  is  t hen  r e a d i l y  s h o w n  tha t  t h e  p o t e n t i a l  of (8) a m o u n t s  to  a L e n n a r d - J o n e s  n - -  6 m o d e l  wi th  t h e  m o l e c -  

u l a r - i n t e r a c t i o n  p o t e n t i a l  d e p e n d e n t  on t e m p e r a t u r e :  
l n 

n - - 6  n ' - 6  

2 / " j ~ - - 6  "~ .-6 

C a l c u l a t i o n s  have  b e e n  p e r f o r m e d  
p o l a r  g a s e s  in  t e r m s  of t he  p o t e n t i a l  

6 

F 4 

0 

[7] on the second and third nonadditive virial  coefficients for certain 

(9) 
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Fig. 1. Compar iso  n of ~?0~r) given by [2] with resul ts  
for various potentials:  1) L - J  {9-6); 2 ) K e e s o m ( 9 - 6 -  
6); 3) Keesom(15-6-6) ;  4 )Keesom (15-6-6); 5) Stock-  
mayer ,  6"  = 2.5; 6) potential of (10), a = 0.35 A3; 
7) Keesom(12-6-6)  with the pa ramete r s  of [6]; 6~0 , %, 
t,  ~ 

! ") [ ] - - ~ -  1 + ~ + Gc*(6y) 2 r *-6 . (10) ~p(r)=4 k 0 1§  r *-le 1 - -  

The model of (10) incorporates  not only the d ipole- -d ipole  at tract ion,  but also d ipole- -d ipole  repulsion 
(second t e r m  in the expansion of [7]), as well as the interaction between a dipole and an indimed dipole. 

Some of the above potentials have never been used to calculate ~0Cr) for water vapor.  

Table 1 gives the molecular - in te rac t ion  potentials derived for models (5)-(8) and (10); the e r ro r s  in 
the pa ramete r s  a re  given on the assumption that there  a re  no sys temat ic  el r o t s .  Note that the molecular -  
interact ion potentials a re  strongly corre la ted  (correlation coefficient about 1). Figure 1 shows the deviations 
of the calculated viscosi ty  f rom the values given by (1) for the various molecular - in te rac t ion  functions. The 
residuals  of @ (Table 1) indicate the per formance  in the descr ipt ion of measurements .  

Figure  1 shows that the best resul ts  a re  obtained for the potential of (8) (n -- 9) and (10) (with e = 0035/~3); 
in the case  of the 9 -6 -6  potential, there  is a lmost  complete agreement  between the theoret ical  values f o r  
T0(T) and (1) within the relevant  region, and also on extrapolation to high tempera tures  (up to 1800~ Figure 
1 also shows that below 100~ there  a re  sys temat ic  deviations for all the model potentials (although some of 
these  deviations a re  small) .  However, these may be due not only to approximafions used in the models,  but 
a l so  Co e r ro r s  in extrapolating from (1). 

The following conclusions can thus be drawn: 

1. The molecular - in te rac t ion  potentials derived by modifying the Lennard-Jones model all share  the 
disadvantage of having a potential well excessively narrow by compar ison  with the real is t ic  potential [8], so 
they cannot reproduce  with sufficient precis ion the behavior of ~0(T) throughout the t empera tu re  range,  which 
is seen in the unduly large energies at the equilibrium internuclear  distances (e/k) 0 (Table 1), namely, values 
large by compar ison with those found f rom the vir ial  coefficients [6], while the resul ts  for the dipole moment 

a re  less than the measured values.  

2. Some molecu la r - in te rac t ion  potentials, however, descr ibe  the measured ~0fr) a lmost  as well as the 
best  interpolation formulas .  

3. It is c lear  that measurements  of various types must be employed in choosing the pa ramete r s  of any 
part icular  potential, s ince the individual potentials a re  not equally dependent on the various kinetic or equilib- 
r ium pa r ame te r s .  However, it has been pointed out [1] that the resul ts  a re  of little significance in relat ion to 
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in terpreta t ions  of molecular  forces  if the field for  a polar gas is replaced by an effective sy m m et r i c a l  field. 
On the one hand, this is confirmed by our calculations for T0(T) for  water  vapor,  including those with the 
molecular  potentials of [6], w h i c h w e r e  der ived f rom the p - - V - - T  data (curve 7 of Fig.  1). The  deviations 
f rom (1) a r e  up to  3-57o, and they increase  toward high and low t e m p e r a t u r e s .  On the other hand, these  de-  
viations a r e  compara t ive ly  smal l ,  so  o n e c a n  say  that one gets reasonably  sa t i s fac tory  resul ts  within the 
f ramework  of the Chapman--  Enskog theory  by using various types Of exper imenta l  data with a reasonably  
rea l i s t i c  potential .  

NOTATION 

T,  t e m pe r a tu r e ;  T0(T), zero-dens i ty  dynamic viscosi ty;  T c r  = 647.27~ ai ,  in terpolat ion pa rame te r s  
for  viscosi ty;  T *  = kT /e ,  reduced t empera tu re ;  W~ = 1/(A~?0i) 2, s ta t is t ical  weight; A~0j = 5~^.~0j, absolute 

j J . ~ $  ,~ ' J U ]  

e r r o r ;  5~=, re la t ive  e r r o r ;  i ,  ~/k, ~, 5, ~,  p a r a m e t e r s  of potentials;  ~l~ 2.2! (T~), reduced coll is ion integral;  bi, 
p a r a m e t e r s  of interpolat ion formula  for  coll is ion in tegra ls  ~(2-2)'~(T*); r* = r/if,  reduced in te rnuc lear  distance; 

* 2 * �9 * *  * 6 = ~/[2(e/k)0%] , reduced dipole moment;  7 = 2a/%; 2a, dzameter  of spher ica l  core;  6 = 5 G(01, 02, ~); 
G(01, 02, @) = 2 cos 01 cos 02 - sin 01 sin 02 cos r function incorporat ing the effects  of dipole orientation; T~ = 
T/(e/k)0,  reduced t empera tu re ;  a * = ~ / ~ ,  reduced molecu la r  polar izabi l i ty .  
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A C C U R A C Y  O F  A O N E - D I M E N S I O N A L  A P P R O X I M A T I O N  

F O R  D O U B L E  R O D S  

I .  E .  Z i n c  a n d  Y u .  A .  S o k o v i s h i n  UDC 536.24.02 

Limits of applicabili ty of one-dimensional  models in computing t empera tu re s  in two- layered  
rods a r e  established on the basis of comparing the one-dimensional  approximat ion with the exact 

�9 two-dimensional  solut ion.  

To  solve heat-conduct ion problems in cyl indr ical  a r m a t u r e  elements of constant and var iable  cross  
sect ion,  a one-dimensional  approximat ion method is used. The one-dimensional  approximation yields s a t i s -  
fac tory  resu l t s  for  homogeneous rods with low values of the Blot c r i t e r ion  [1]. The limits of a possible appl i -  
cation of this method we re  established in [2] in an example of a solid homogeneous cyl inder .  Meanwhile, 
s t r i c t  c r i t e r i a  for  double rods consist ing of heterogeneous mater ia ls  a re  completely absent .  

In o rde r  to es tabl ish admiss ib le  quantitative limits for  the applicabili ty of the one-dimensional  approxi-  
mation method for double rods ,  let us consider  a cylinder consist ing of heterogeneous mater ia ls  with the co-  
efficients of t he rma l  conductivity A1 and ?'2. The cyl inder  is heated at the base  and exchanges heat with the 
surrounding medium of t e m p e r a t u r e  T m via the side sur face  because  of convection and radiat ion with a total  
constant coefficient of heat emiss ion  c~. The end-face sur face  is considered heat- insulated,  which is the 
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